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AbslracL Experimental evidence of a aossover from a thermally 10 a non-thermally 
activated flux motion b reponed for nBaCaCu0. It was obtained by measuring the time 
decay of both zem-field-cwled and remanent magnetization. The measured relaxation 
rater at low temperature are in good agreement with the prediction of the quantum 
mlleclive m e p  themy for anisotropic superconducton in the low-Beld-single-vonex 
pinning. 

1. Introduction 

Physical systems having states separated from the neighbouring states by high potential 
barriers are known to exhibit decays via thermal activation and quantum mechanical 
tunnelling. In particular, the study of metastable states in a variety of physical 
systems (Josephson junctions [l], charge density waves 121, metastable vacuum 131 and 
magnetic systems; e.g. magnetic grains [4], ferrofluids [q and magnetic multilayers 
[6]) has revealed that at sufficiently low temperatures thermal activation is changed 
to quantum tunnelling. 

Recently, the possibility of quantum tunnelling for a system of magnetic vortices 
has been investigated both in high- [7-111 and in low-temperature superconductors 
[12-141 where, in contrast to the standard model of thermally activated flux motion 
[U] (which predicts at low temperatures a vanishing magnetic relaxation rate), the 
relaxation rate has been found not to extrapolate to zero. 

In this work we report the results of low-temperature (T/T, << 1) 
magnetic relaxation measurements performed on bulk samples (powders) of 
Tl,Ba,Ca,Cu,O,-,, with evidence of a crossover from thermally to non-thermally 
activated flux motion. 

2. Results and discussion 

A powdered sample was prepared starting from suitable amounts of Tl,O,, CaO, 
BaO, and CuO, following the procedure described in 116). X-ray diffraction data 
and low-field (applied field Ha = 5 Oe) magnetization measurements, Carried out 
with a commercial SQUID magnetometer (figure l ) ,  revealed that the sample consists 
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of the phase with two 010, planes (TI,Ba,Ca,Cu,O,), with a critical temperature 
(onset) T, E 108 K The time decay of the magnetization was studied down to 1.8 K 
(0.017 < T/T,  < 0.11) following two procedures. In the first, the sample was moled 
down to the working temperature in zero field and then a field (H = 1.5 kOe) was 
applied and kept constant during the measurements (figure 2(a)). In the second, the 
sample was moled down in a low field (H = 0.1 kOe) and the measurements were 
carried out after switching it off (figure 2(b)). T$@cal time decays were recorded for 
2x  l@ s. After each run  was completed, the sample temperature was raised well above 
T, in order to remove mmpletely the trapped flux lines. In both cases logarithmic 
decays were observed in the whole temperature range investigated, apart from small 
deviations at short times. Moreover, the value and the temperature behaviour of the 
relaxation rate seems to he not affected by the magnitude of the applied field and by 
the measuring procedure. 
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Flgure 1. Zero-Add-cwled and f ie ldcwled magnetization as a funaion of temperature 
(applied field Ha = 5 Oe). 

Figures 3(a! and 3(b) show the relaxation rates normalized to the first measured 
value of the magnetization (MO) ,  R = [ ( l /M,)(dM/dint)] ,  for the zero-field-cooled 
magnetization (RMzIc )  and for the remanent magnetization ( R M r )  respectively. Both 
R,, and R,, decrease linearly with temperature down to 6.5 K, with a plateau 
extending down to 1.8 K. 

The occurrence of a temperature independent logarithmic relaxation rate has been 
reported for a variety of mco samples at low temperatures (T < 1 K) [lo, 111, as 
well as for T > 20 K (see [17] and references therein). While in the former case 
an explanation has been given in terms of quantum tunnelling, in the latter the data 
have been explained in the framework of the vortex glass model (181. The model, 
predicting a linear temperature dependence of R with a crossover into a temperature 
independent plateau, ignores quantum tunnelling at low temperatures. 

It has been shown 1191 that in a purely ZD flux line lattice (FLL) the vortex glass 
phase is absent at any finite temperature, while in a qUaSi-2D FLL the g a s  phase 
can exist but with a transition temperature lower than the FLL melting temperature 
(for Bi and TI compounds it is estimated to be within the range W O  K). Layered 
superconductors (i.e. Bi and TI based materials), due to their large anisotropies 
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Figure 2. l i m e  decay of Ule magnetization at different lemperatures: (0) zero-field- 
moled magnetization (Ha  = 1.5 kOe); ( b )  remanent magnetization (field applied during 
the cooling Ha = 0.1 kOe). 

(values of the anisotropy factor r are 3000 [20] and > 1 6  1211 for Bi and TI 
respectively), should be considered as a stacking of Josephson coupled sheets in 
which a 2~ vortex lattice exists. Moreover, concerning the dimensionality of the 
FU in YBCO and TI systems, it should be noted that the effective Josephson length, 
A = rLI2d (d is the spacing between the C u 4  planes), is 2 35 A and rr 4700 A 
respectively. By virtue of this, we choose to analyse the experimental data following 
the theoretical treatment of Blatter et a1 [22], who have recently tackled the problem 
of quantum flux creep in bulk superconductors in the framework of the collective 
pinning theory. 

The tunnelling rate T is determined by the effective Euclidean action SEff 
(the action which takes into account the coupling of the tunnelling object to its 
environment [23]) of the process, T a (-S;@/h). In the limit of weak fields and 
strong dissipation, large relaxation rates are predicted [22] for material characterized 
by a small coherence length and by a large normal state resistivity ( p " ) .  

For anisotropic superconductors in the single-vortex regime (this should be the 
case for fields low enough, as long as the vortex length is lower than the mean 
distance between neighbouring vortices, L ,  < a") the effective action is given by 
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Fkum 3. Normalized relaxation rate of the magnetization BS a function of temperature: 
(a) um-field-moled magnelization ( H e  = 1.5 kOe); (b) remanent magnetization (field 
applied during lhe moling Ha = 0.1 kOe). 

where ( is the coherence length, pn the normal state resistivity extrapolated to zero 
temperature and Ju/ J,  the depairing-critical current density ratio. 

However, as the collective pinning length L, E (( Ju/J,)L/2r-'/2 (r 1 A) is much 

(E 1200 8. at H = 1.5 kOe) and also smaller than the spacing ( d )  between the Cu-0 
planes (E 15 8, for the 2212 phase [24]) single pancakes of flux lines should be the 
actual tunnelling objects. In this case the effective action should be Bven by: 

"!!er th-2 %e me2:: dk.t22% bet%;eez zeighh%:i::g ..CZi%S GU = !.G?5($u/E)"2 

SEm/h = ( h / e 2 ) ( d / p , )  

"dking pn = 10-20 pRcm [25], J u / J ,  z 200 and ( E 30 A, the calculated relaxation 
rate is R = h/Sgff z 2-3%, consistent with the experimental ( l /Mu)dM/d  In 1 value. 

The result obtained by Blatter er al [22] for SE* is strictly valid in the limit of 
T - 0. In principle the quantum tunnelling can be thermally assisted, leading to an 
increase of the magnetic relaxation rate. The correction to the quantum tunnelling at 
finite temperatures has been calculated [ll], predicting an increase of R as A +  BT2 
below a crossover temperature Tqc = l i / t c k B ,  where 1 ,  is the characteristic tunnelling 
time. Actually, no crossover is observed in our data as also reported for YBCO [ll]; 
instead, the linear R versus T behaviour characteristic of the standard model of the 
thermally activated flux creep [15] is observed for T > 6.5 K. 
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The observed behaviour gives strong support to the quantum tunnelling 
hypothesis. A comparison of our results to those for YBCO reveals that the 
temperature range for the non-thermally activated flux motion is wider for the TI 
compound, exhibiting a higher relaxation rate (2% to be compared to - 0.4% in 
YBa,Cu,O, powders [ll] and - 0.7% in YBa,Cu,07 single crystals [XI). This is 
due to the quasi-2D character of the --based material, where the distance between 
the CuO-2 planes is about 3.4 times the coherence length along the c axis. As a 
consequence, the tunnelling could be considered as a process involving 2D pancake 
vortices rather than 3D vortex lines [27-301. 
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